A de novo CTNNB1 nonsense mutation associated with syndromic atypical hyperekplexia, microcephaly and intellectual disability: a case report
نویسندگان
چکیده
BACKGROUND In addition to its role in cell adhesion and gene expression in the canonical Wingless/integrated Wnt signaling pathway, β-catenin also regulates genes that underlie the transmission of nerve impulses. Mutations of CTNNB1 (β-catenin) have recently been described in patients with a wide range of neurodevelopmental disorders (intellectual disability, microcephaly and other syndromic features). We for the first time associate CTNNB1 mutation with hyperekplexia identifying it as an additional candidate for consideration in patients with startle syndrome. CASE PRESENTATION We describe an 11 year old male Polish patient with a de novo nonsense mutation in CTNNB1 who in addition to the major features of CTNNB1-related syndrome including intellectual disability and microcephaly, exhibited hyperekplexia and apraxia of upward gaze. The patient became symptomatic at the age of 20 months exhibiting delayed speech and psychomotor development. Social and emotional development was normal but mild hyperactivity was noted. Episodic falls when startled by noise or touch were observed from the age of 8.5 years, progressively increasing but never with loss of consciousness. Targeted gene panel next generation sequencing (NGS) and patient-parents trio analysis revealed a heterozygous de novo nonsense mutation in exon 3 of CTNNB1 identifying a novel association of β-catenin with hyperekplexia. CONCLUSION We report for the first time a clear association of mutation in CTNNB1 with an atypical syndromic heperekplexia expanding the phenotype of CTNNB1-related syndrome. Consequently CTNNB1 should be added to the growing list of genes to be considered as a cause of startle disease or syndromic hyperekplexia.
منابع مشابه
Syndromic Intellectual Disability Caused by a Novel Truncating Variant in AHDC1: A Case Report
Mutations in the AHDC1 gene are associated with the Xia-Gibbs syndrome (XGS), a sporadic genetic disorder characterised by developmental delay, intellectual disability, hypotonia, obstructive sleep apnoea, dysmorphic facial features, and cerebral malformations with plagiocephaly. Here we report the case of a 13-year-old Colombian female patient with a history of developmental delay, speech dela...
متن کاملExome sequencing identifies a de novo mutation of CTNNB1 gene in a patient mainly presented with retinal detachment, lens and vitreous opacities, microcephaly, and developmental delay
RATIONALE The CTNNB1 (β-catenin) gene is well known for its crucial role in cell adhesion and the Wnt-signaling pathway. Previous studies have shown that gain-of-function mutations in the CTNNB1 gene contribute to the occurrence and development of a variety of carcinomas in humans. Recently, de novo, heterozygous, loss-of-function mutations of the CTNNB1 gene were found that partially explain i...
متن کاملtRNA methyltransferase homologue gene TRMT10A mutation in young adult‐onset diabetes with intellectual disability, microcephaly and epilepsy
BACKGROUND A syndrome of young-onset diabetes mellitus associated with microcephaly, epilepsy and intellectual disability caused by mutations in the tRNA methyltransferase 10 homologue A (TRMT10A) gene has recently been described. CASE REPORT We report two siblings from the fourth family reported to have diabetes mellitus as a result of a TRMT10A mutation. A homozygous nonsense mutation p.Glu...
متن کاملDeletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin–Siris syndrome
BACKGROUND SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin-Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. METHODS We used array based comparative genomic hybridisation and ...
متن کاملMicroduplication of Xp22.31 and MECP2 Pathogenic Variant in a Girl with Rett Syndrome: A Case Report
Rett syndrome (RS) is a neurodevelopmental infantile disease characterized by an early normal psychomotor development followed by a regression in the acquisition of normal developmental stages. In the majority of cases, it leads to a sporadic mutation in the MECP2 gene, which is located on the X chromosome. However, this syndrome has also been associated with microdeletions, gene translocations...
متن کامل